Wrapper for the method from Caughey et al. (2023) using the RIQITE package. This provides confidence intervals for effect quantiles using a single rank statistic.
Usage
method_caughey(
Z,
Y,
k_vec,
method.list = list(name = "Wilcoxon"),
nperm = 10^4,
alpha = 0.05
)Arguments
- Z
An n-dimensional binary treatment assignment vector (1 = treated, 0 = control).
- Y
An n-dimensional observed outcome vector.
- k_vec
Vector of quantile ranks to compute intervals for.
- method.list
A list specifying the rank statistic method:
name: "Wilcoxon" or "Stephenson"s: (for Stephenson) the parameter s
- nperm
Number of permutations for the null distribution.
- alpha
Significance level.
Details
This method is based on Caughey, Dafoe, Li, and Miratrix (2023) and uses the RIQITE package implementation. It provides simultaneous confidence intervals for specified quantiles using a single rank statistic.
References
Caughey, D., Dafoe, A., Li, X., and Miratrix, L. (2023). Randomization Inference for Treatment Effect Quantiles. Journal of the American Statistical Association.
See also
method_chen_li for the Chen and Li combination method,
com_conf_quant_larger_cre for the CMRSS combined method
Examples
if (FALSE) { # \dontrun{
data(electric_teachers)
Z <- electric_teachers$TxAny
Y <- electric_teachers$gain
# Using Stephenson statistic with s = 6
result <- method_caughey(Z, Y,
k_vec = floor(c(0.7, 0.8, 0.9) * length(Z)),
method.list = list(name = "Stephenson", s = 6),
nperm = 10000,
alpha = 0.05)
print(result)
} # }