Skip to contents

All functions

tau_norm() tau_norm_outliers() tau_norm_covariate() tau_norm_covariate_outliers() tau_norm_covariate_cont() tau_norm_covariate_levels()
Causal Effect Functions
adjust_block_tests()
Test every block and adjust the p-values
alpha_addis()
Alpha adjustment function: ADDIS
alpha_investing()
Alpha adjustment function: Alpha Investing
alpha_saffron()
Alpha adjustment function: SAFFRON
calc_errs()
Calculate the error and success proportions of tests for a single iteration
create_effects()
Simulate Treatment Effects
dists_and_trans()
Outcome distances and transformations
edisti()
Outcome e-distances between treatment arms
errsimfn()
Error assessment function
fast_dists_and_trans_by_unit_arma_parR()
Outcome distances and transformations: C++ OpenMP Parallel version
findBlocks()
Test, Split, Repeat
make_results_ggraph()
Make a plot of the nodes
make_results_tree()
Make a node level tree object of the results of nested testing
nodeidfn()
Use hashing to make a node id
pIndepDist()
P-value function: Independence Treatment Distance Test
pOneway()
P-value function: T-test
pWilcox()
P-value function: Wilcox Test
padj_test_fn()
Create treatment effect, then add tau and test using the SIUP method
report_detections()
Return detected blocks plus info
reveal_po_and_test()
Repeat experiment, reveal treatment effects from the potential outcomes, test within each block, summarize
reveal_po_and_test_siup()
Repeat experiment, reveal treatment effects from the potential outcomes, test within partitions, summarize
splitCluster()
Splitting function: K-Means Clustering
splitEqualApprox()
Splitting function: Approx Equal Splits
splitLOO()
Splitting function: Leave One Out
splitSpecified()
A set of pre-specified splits using a data.table object (Deprecate)
splitSpecifiedFactor()
A set of pre-specified splits
splitSpecifiedFactorMulti()
A set of pre-specified splits